Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen

Scientific Expert Workshop.

Quantifying the health impacts of policies – Principles, methods, and models. Düsseldorf, Germany, 16 - 17 March 2010. Supplementary volume to LIGA.Fokus 11

WHO Collaborating Center for Regional Health Policy and Public Health

Imprint

NRW Institute of Health and Work/Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen (LIGA.NRW) Ulenbergstraße 127 – 131 40225 Düsseldorf, Germany Telephone +49 211 3101-0 www.liga.nrw.de poststelle@liga.nrw.de

Supplementary volume prepared by Rainer Fehr, LIGA.NRW Odile Mekel, LIGA.NRW

Acknowledgements The editors would like to thank Heidi Kraft for her contribution to preparing this report.

Processing LIGA.NRW

The opinions expressed and arguments employed here are the responsibility of the respective author(s) and do not necessarily reflect those of LIGA.NRW.

Photo credits

Title picture: © by_Gerd-Altmann/pixelio.de; © by_Andrea-Kusajda/pixelio.de

Layout and publishing

LIGA.NRW

LIGA.NRW is an institution of the State of North Rhine-Westphalia, affiliated to the Ministry of Employment, Integration and Social Affairs (MAIS) as well as the Ministry of Health, Emancipation, Nursing and Old Age (MGEPA)

Reproduction and copying - incl. in extracts - only with the consent of LIGA.NRW

Düsseldorf, Germany, December 2010

Suggested citation

Rainer Fehr, Odile Mekel (eds.) (2010): Quantifying the health impacts of policies – Principles, methods, and models. Scientific Expert Workshop, Düsseldorf, Germany, 16 - 17 March 2010. Supplementary volume to LIGA.Fokus 11, LIGA.NRW

This is the Supplementary volume to the LIGA.NRW report: Quantifying the health impacts of policies – Principles, methods, and models. Scientific Expert Workshop, Düsseldorf, Germany, 16 - 17 March 2010. LIGA.NRW, LIGA.Fokus series, no. 11, ISBN 978-3-88139-173-3

This Supplementary volume contains the workshop presentations.

Table of Contents

What this supplementary is about	5
----------------------------------	---

Session 1 "Principles of quantification of health impacts"

Rainer Fehr: Vision and promise of quantification of health impacts in health-related impact assessments	6
Annette Prüss-Ustün: Summary measures of population health (SMPH) in health-related impact assessments	14
Michael Schümann: Critical comments on the use of summary measures of population health (SMPH) in health related Impact Assessment	24
Fiona Haigh: Equity and quantification	50

Session 2 "Models / projects"

PREVENT

What this supplementary is about

A workshop on quantification of health impacts (e.g. resulting from policies, plans and programs) was held in Düsseldorf Germany, 16 - 17 March 2010.

Workshop proceedings are published as LIGA.Fokus no. 11.

This is the supplementary volume, documenting in full detail the presentations given at the workshop.

Session 1 "Principles of quantification of health impacts" Rainer Fehr: Vision and promise of quantification of health impacts in health-related impact assessments

Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen

1. Context: Policy <-> Science

"Health Campus" NRW in Bochum (Ruhr area), funded by Ministries of: Health; Research; Economy, <u>www.gc.nrw.de</u>, incl. Cluster Management Health Economics NRW, MedEcon Ruhr, Epidemiologic Cancer Registry NRW, Health Strategy Center, U Applied Sciences for Health, LIGA.NRW, etc. -> ample opportunities for interaction of (health) policy-making and (health) sciences

NRW Institute of Health & Work (LIGA.NRW): "More health for all", <u>www.liga.nrw.de</u>, LIGA.NRW & predecessors: work devoted to RHP for decades; multiple (EC) co-funded projects, often related to HIA

Quantifying the health impacts of policies – Principles, methods and models. LIGA.NRW, Düsseldorf, 16-17 March 2010 2

Gesundheit und Arbeit des Landes Nordrhein-Westfalen

Landesinstitut für

WHO Collaborating Center for Regional Health Policy & Public Health

Leitmotifs include: integration, prospective orientation, theory and practice of policy-related health assessments

Activities include: Scientific discourse, workshops, advanced training, e.g. in March 2010: Health Systems Performance Assessment, with RAND Europe representative

Basic frameworks include:

7

	Policy arena / rationality	Science arena / rationality
Drivers, values	Political programs, innovat- ions, public approval, election success	Strive for knowledge, "ob- jectivity", discovery, innov- ation, scientific recognition
Structure, actors	Division of power (legislative, executive, jurisdictive), politi- cal parties, civic society, NGOs, public media	Research groups, univer- sities, professional asoci- ations, funding agrencies, donors
Processes, work forms	Governance; policies, plans, programs, projects, innovat- ive technologies (PPPPT)	Research projects and pro- grams: basic / applied / Re- search & Development
Quality As- surance / Control	Elections, Review commit- tees, "history"	Peer review, publications, acquisition of funding
models. LIGA.NRW, Dü	sseldorf, 16-17 March 2010 4	Regional Health Folicy and Public Health

- 1999 HIA Seminar Helsinki, HIA Transport Bielefeld (with RIVM), WHO Gothenburg Conference
- 2000 U Hamburg: Stadt & Staat; Round table NSPH Amsterdam; SEA Szentendre (Hungary)
- 2001 Eco-Informa Argonne IL (USA), ISEE Garmisch, California Health Department (Oakland), German National HIA workshop (BgVV Berlin)
 2002 ISEE Vancouver, IAIA The Hague (NL), EUPHA Dresden

Quantifying the health impacts of policies – Principles, methods and models. LIGA.NRW, Düsseldorf, 16-17 March 2010 7

9

Quantitative approaches in HIA: Disadvantages

Quantitative approaches...

- incorporate numerous value- and model-based assumptions that are not always made explicit
- are less familiar than traditional measures of health/disease
- may be infeasible because of limited data on the effect estimates and baseline characteristics of the population
- may be too time- and cost-intensive
- based on "garbage in garbage out" principle (e.g. non-causal associations), may give an unwarranted patina of robust science

may de-emphasize, or even omit, stakeholder participation

modified after Nusselder & Lhachimi, 2008

Quantifying the health impacts of policies – Principles, methods and models. LIGA.NRW, Düsseldorf, 16-17 March 2010 13

WHO Collaborating Center for Regional Health Policy and Public Health

4. Conclusions

- HIA = a Public Health promise which is hitherto at least partially, and in some countries widely unfulfilled.
- There are different "schools", or traditions, of HIA, incl. at least the following:
- qualitative / procedural / focus on stakeholder participation
- quantitative / methodological
- Currently, more than ever, these 2 traditions show a distinct tendency towards convergence.
- With respect to HIA, each country (or even region) seems to feature a specific situation, incl. opportunities for, and obstacles to, implementation of HIA (language not being smallest obstacle)

We hope this workshop contributes to further the development of HIA as a key tool for securing health, in NRW and way beyond

WHO Collaborating Center for Regional Health Policy and Public Health

Annette Prüss-Ustün:

Summary measures of population health (SMPH) in health-related impact assessments

Dr Annette Prüss-Ustün Public Health and Environment

From Wikipedia, the free encyclopedia

Disability-adjusted life year

The disability-adjusted life year (DALY) is a measure of overall disease burden. Originally developed by the World Health Organization, it is becoming increasingly common in the field of public health and health impact assessment (HIA).

2 SPMH in health-related impact assessments | 16 March 2010

How to make a quantified health-related impact assessment?

- Guides for EBD assessment at local level are available
- Comprehensive data needed:
 - Exposure data for selected risk factors in a selected setting (PM10, solid fuel use, % access to safe drinking water, etc)
 - Health data (deaths, incidence or DALYs) for given diseases in a selected settings
- Calculations easy to perform

Why use SPMH for assessing health impacts?

Veerman JL et al (2005) Quantitative HIA: current practice and future directions

- Reviewed assessments included numerous indicators for health outcomes:
 E.g.: Deaths; hospitalizations for asthma, accident injuries
- SMPH recommended in addition to conventional health outcome measures

Kjellström et al (2003) Comparative assessment of transport risks—how it can contribute to health impact assessment of transport policies

- A common basis for comparison removes ambiguity when trying to make decisions on the basis of the health equivalent of apples and pears that can occur in HIA
- Problem: limited scientific research on changing health risks from transport policies.

12 SPMH in health-related impact assessments | 16 March 2010

Quantitative HIA of transport policies: two simulations related to speed limit reduction and traffic re-allocation in the Netherlands

D Schram-Bijkerk, E van Kempen, A B Knol, et al. (2009)

13 SPMH in health-related impact assessments | 16 March 2010

Example of assessment using a Delhi Lower-carbon-Increased comparative measure active emission motor vehicles travel Physical activity Public health benefits of strategies Premature deaths 0 -352 to reduce greenhouse-gas YLL 0 -6040 YLD 0 -816 emissions: urban land transport DALYs 0 -6857 Air pollution J Woodcock et al. Lancet, 2009 Premature deaths -74 -99 YH -1696 -2240 YLD 0 0 DALYs -1696 -2240 Road traffic crashes* Measure: per million population Premature deaths 0 -67 YLL 0 -2809 YLD 0 -730 DALYs 0 -3540 Total[†] Premature deaths -74 -511 YLL -1696 -10969 YLD 0 -1547 DATYs -1696 -12516

Series of guides on EBD for national or local assessment

- Lead
- Malnutrition
- Water, sanitation & hygiene
- Indoor air from solid fuels
- Ambient air
- Climate change
- UV radiation
- Community noise
- + calculation spreadsheets

19 SPMH in health-related impact assessments | 16 March 2010

- Occupation
 - carcinogens
 - dusts
 - back pain
 - needlestick injuries
- Poverty (only association)
- Housing
- Radon
- Mercury
- Second-hand smoke

SPMH in health-related impact assessments | 16 March 2010

More information and references

WHO's web sites on:

Global burden of disease

http://www.who.int/healthinfo/global_burden_disease/en/index.html

Quantifying health impacts from environmental risks

http://www.who.int/quantifying ehimpacts/en/

Health impact assessment

http://www.who.int/hia/en/

21 SPMH in health-related impact assessments | 16 March 2010

Michael Schümann:

Critical comments on the use of summary measures of population health (SMPH) in health related Impact Assessment

Quantifying the health impacts of policies Principles, methods, and models Düsseldorf / March 2010

Critical comments on the use of summary measures of population health (SMPH) in health related Impact Assessment

Michael Schümann

Behörde für Familie, Soziales, Gesundheit und Verbraucherschutz (BSG) Freie und Hansestadt Hamburg / Umweltbezogener Gesundheitsschutz

Michael.Schuemann@bsg.hamburg.de

Behörde für Soziales, Familie, Gesundheit und Verbraucherschutz

Dr. Michael Schümann

My Summary points

As an epidemiologist:

- uncertainties in estimating the "life expectancy"
- · application for individuals and for group prediction
- discounting/tariff of life years in dependence to the Age-QoLrelationship is not a scientific task, it is an economic or political valuation of humans

As a psychometric scientist:

- restrictions to formulate a test instruments (questionnaire/ visual scales) resulting in a one-dimensional scale for the "Quality of life", "Quality of the State of Health" or "Subjective Wellbeing" of individuals and populations.
- weighted aggregation to one dimension is not a scientific based task, it is a valuation.
- The LE*QoL→QALY scale as a multiplication of two different scales is neither linear, additive, consistent, reliable, neutral nor valid.

Summary points

Ethical issues:

- "values/discounts/tariffs" to "the life of individuals and groups" like adjusted DALYs are unfair against newborns, elderly and any person with disabilities (UN Convention on the Rights of Persons with Disabilities 2007)..
- applying these weights is polically and legally not justifiable.
- survey or panel data (even if they are representative) should not be applied as a basis for adjusting/ weighting/ assessing of "life years" against "quality of life" for population, groups and individuals (equal rights).

Summary points

As a scientific health policy adviser:

Cost-utility-comparison and Cost-QALY–Evaluation can't be done for individuals without taking into account medical and ethical councils, patient-physician interaction and/or individual decisions

.. and in practice:

Using "generic instruments" for economical Cost-Utility-Evaluation might result in "generic decisions" for the allocation of resources (money, medical treatment, access to infrastructure, ..)

Policies and programmes to combat diseases and injuries should properly be based on current, timely information about the nature and extent of health problems, their determinants, and how the impact of such diseases and injuries is changing, both with respect to magnitude and distribution in populations.

MATHERS, Colin D. et al. Counting the dead and what they died from: an assessment of the global status of cause of death data. *Bull World Health Organ* [online]. 2005, vol.83, n.3, pp. 171-177c. Available from: [cited 2010-03-02]: http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S0042-96862005000300009&Ing=en&nrm=iso doi: 10.1590/S0042-96862005000300099.

Contrafactious to 82.5 (M) and 85 (F)

LE IN EUROPE	LE at birth	Females	Males	Diff
•	Niederlande	82.5	78.4	4.1
Male and Female Life	Schweden	83.3	79.2	4.1
Expectency in the 27 EU	Ver. Königreich	81.8	77.6	4.2
Expectancy in the 27-EU	Dänemark	81.0	76.5	4.5
member states	Griechenland	82.3	77.7	4.6
- Sorted by F-M-difference -	Zypern	83.1	78.5	4.6
27-Ell members	Irland	82.3	77.5	4.8
	Norwegen	83.2	78.4	4.8
Period: 2006-2008	Schweiz	84.6	79.8	4.8
EuroStat Data / March 2010	Luxemburg	83.1	78.1	5.0
	Deutschland	82.7	77.6	5.1
	Malta	82.3	77.1	5.2
	Belgien	82.6	77.1	5.5
	Italien	84.2	78.7	5.5
F-M-Difference in Life expectancy at birth	Österreich	83.3	77.8	5.5
by Life Expectancy of Females	Portugal	82.4	76.2	6.2
	Spanien	84.3	78.0	6.3
12.0 • Diff.(LE F-M)	Tschech. Rep.	80.5	74.1	6.4
• •	Finnland	83.3	76.5	6.8
Щ 10.0 -	Slowenien	82.6	75.5	7.1
	Bulgarien	77.0	69.8	7.2
	Frankreich	84.9	77.6	7.3
₹ 6.0	Rumänien	77.2	69.7	7.5
<u>е</u>	Slowakei	79.0	70.8	8.2
° 4.0 − − − − − − − − − − − − − − − − − − −	Ungarn	78.3	70.0	8.3
2 dere	Polen	80.0	71.3	8.7
ā 20	Estland	79.5	68.7	10.8
0.0	Lettland	77.8	67.0	10.8
76.0 78.0 80.0 82.0 84.0 86.0	Litauen	77.6	66.3	11.3
Life Expectancy of Females	FI127	82.2	76.1	6.1

- Comparison and evaluation of national/regional economics, economic growth and the impact of political decisions on the public health
- Allocation of restricted resources using decisionanalytic approaches for priorisation and costutility-approaches

003					
	One quality-adjusted life year (DALY) can be thought of as one lost year of "healthy" life, and the burden of disease can be thought of as a measurement of the gap between current health status and an ideal situation where everyone lives into old age, free of disease and disability.				
	DALY =	YLL + YLD			
	where:				
	YLL =	number of deaths × standard life expectancy at the	age of death		
	YLD =	incidence (period) × average duration of the illness × disability weight			
	The weight from 0 (per	factor reflects the Quality of the disease on a sc fect health) to 1 (death).	ale The global burden of disease: 2004 update World Health Organization (WHO) Geneva, Switzerland 2008		

Article 2 Definitions

. . .

discrimination on the basis of disability means any distinction, exclusion or restriction on the basis of disability which has the purpose or effect of impairing or nullifying the recognition, enjoyment or exercise, on an equal basis with others, of all human rights and fundamental freedoms in the political, economic, social, cultural, civil or any other field. It includes all forms of discrimination, including denial of reasonable accommodation;

http://www.un.org/disabilities/default.asp?id=182

LIGA.NRW

dimensional preferences already exist in the patient's mind, ..

.. the problems of translation the preference into a question / interview is very difficult to sustain in the real-world interaction in a physician's office."

Validity problems

Thomas R. Taylor: J Am Board Fam Med. 2000;13(2) © 2000 American Board of Family Medicine

The Time-Trade-Off (TTO) scheme (1)

Test item / Instruction

Imagine that you are told that you are ill (with a specific disease) and you have 10 years left to live. In connection with this you are also told that you can choose to live these 10 years in your current health state or that you can choose to give up some life years to live for a shorter period in full health.

Indicate with a cross on the line the number of years in full health that you think is of equal value to 10 years in your current health state.

Model assumption

10 [y] * Current State of health [] = x [y] * State of "Full Health" []

Health Related Quality of Life: Health Utilility Inc. /CA

- The multi-attribute utility functions provide all the information required to calculate single-summary scores of health-related quality of life (HRQL) for each health state defined by the classification systems.
- Utility Measurement Theory
- There are two main approaches to measuring utilities, direct measurement and the use of multi-attribute systems. In the multi-attribute approach used for HUI, a respondent completes a questionnaire providing information about an individual's health status that is then scored using a multi-attribute scoring function derived from community preference measures for health states.

Multi-Attribute Health Status Classification System: Health Utilities Index Mark 2 (HUI2)				
Attribute	Levels	Min / Max descripttion of the Attribute		
Sensation	4	Able to see, hear, and speak normally for age. Blind, deaf, or mute		
Mobility	5	Able to walk, bend, lift, jump, and run normally for age. Unable to control or use arms and legs.		
Emotion	5	Generally happy and free from worry. Extremely fretful, angry, irritable, anxious, or depressed usually requiring hospitalization or psychiatric institutional care.		
Cognitive	4	Learns and remembers school work normally for age. Unable to learn and remember		
Self-Care	4	Eats, bathes, dresses, and uses the toilet normally for age Requires the help of another person to eat, bathe, dress, or use the toilet.		
Pain	5	Free of pain and discomfort. Severe pain. Pain not relieved by drugs and constantly disrupts normal activities		
Fertility	3	Able to have children with a fertile spouse.		

http://www.hqlo.com/content/1/1/54/figure/F1?highres=y

Health Related Quality of Life: Health Utilility Inc. /CA

- The major criterion for selecting attributes for the HUI systems was the importance that members of the general public placed on each attribute. Attribute levels were defined to cover the full range of possible abilities/disabilities and to be clearly distinguishable from one another. HUI utility scores represent mean community preferences.
- The HRQL score for each health state is calculated using a mathematical formula (utility function) developed from preference scores measured in accordance with von Neumann-Morgenstern utility theory. Subjects were asked to rate states on a 100-point visual analogue scale (VAS), then to assess a series of health states using a standard gamble chance board (SG). This combination of preference measures ensures appropriate ranking of scores among health states and provides a direct link to the fundamental axioms of utility theory

Horsman *et al.* : The Health Utilities Index (HUI®): concepts, measurement properties and applications. *Health and Quality of Life Outcomes* 2003 **1**:54 doi:10.1186/1477-7525-1-54

Mobility		EuroQol EQ-	5D
I have no problems in walking about		Questionnai	re
I have some problems in walking about			
I am confined to bed			
	Pain/Discomfort		
Self-Care	I have no pain or d	liscomfort	
I have no problems with self-care	I have moderate p	ain or discomfort	
I have some problems washing or dressin	I have extreme nai	n or discomfort	
I am unable to wash or dress myself	Thave extreme par		
Usual Activities (e.g. work, study, house	Anxiety/Depressi	on	
leisure activities)	l am not anxious o	r depressed	
I have no problems with performing my us	l am moderatelv a	nxious or depressed	-
I have some problems with performing my	I am extremely any	vious or depressed	
I am unable to perform my usual activities	r an exteniery an		

Self-assessment for the Quality of Life generates no measurement data !

- The **Quality of Scale** containing subjective estimates is unknown, it is at best ordinal.
- The **Reference System** will be at best pseudo-numeric for each individual, but might be better assumed to vary from person to person.
- The **Response** will show high instability over time, resulting in low reliability.
- The **Unit of the Scale** is not defined. **Equality of Scale Intervals** is violated. In consequence, the validity of numerical operations like addition and multiplication is invalid.
- The **Dimensionality of the QoL Scale** is at least health state dependent. There might be other influences on the attributes structure like age, sex, experience, coping, cultural back-ground among others.

Type of health related evaluation	Costs €	Result
Cost-of-illness-study (COI)		-
Cost-minimization-study (CM)	€	-
Cost-effectiveness-analysis (CEA)	€	Outcom
Willningness-to-pay (WTP)	€	Outcom
Cost-benefit-analysis (CBA)	€	€
Cost-utility-analysis (CUA)	€	utility ~ 6
Utility-Utility-Comparison	Outcome	Outcome
Risk-Risk-Comparison	Outcome	Outcome
Health-Health-Comparison	Outcome	Outcome

For a discussion see: http://www.ers.usda.gov/publications/aer784/

Fiona Haigh: Equity and quantification

LIGA.NRW

Fiona Haigh, Workshop "Quantifying the health impacts of policies-Principles, methods and models", 16-17 March 2010, LIGA,

Fiona Haigh, Workshop "Quantifying the health impacts of policies-Principles, methods and models", 16-17 March 2010, LIGA,

Fiona Haigh, Workshop "Quantifying the health impacts of policies-Principles, methods and models", 16-17 March 2010, LIGA,

Session 2 "Models / projects" PREVENT Esther de Vries: Prevent v 3.0: Work in Progress

- What is Prevent?
- Some history
- Current version (3.0)
- Technical issues
- Inputs and outputs
- Limitations
- Demonstration
- Conclusion

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block> **Technical issues (1)** • Prevent expects an intervention to affect risk factor prevalence is expressed as a change in risk factor prevalence is expressed as a change in disease risk using a relative risk (RR) to calculate a potential impact fraction (PIF) • For a dichotomous risk factor the PIF equation is: $PIF = \frac{\left(p - p^*\right)\left(RR - 1\right)}{p(RR - 1) + 1}$ • With p* the risk factor prevalence after intervention • When p* = 0 the PIF reduces to the population attributable fraction (PAF): $PAF = \frac{p(RR - 1)}{p(RR - 1) + 1}$

Technical issues (2)

• For multiple exposure categories *c* this equation applies:

$$PIF = \frac{\sum_{c} p_{c} RR_{c} - \sum_{c} p_{c}^{*} RR_{c}}{\sum_{c} p_{c} RR_{c}}$$

 For continuous risk factor distributions the following equation applies:

$$PIF = \frac{\int_{a}^{b} RR(x)P(x)dx - \int_{a}^{b} RR(x)P^{*}(x)dx}{\int_{a}^{b} RR(x)P(x)dx}$$

Note that in the continuous case the RR is replaced by a risk function RR(x)

Prevent Eurocadet

Inputs (1)

- Definition tables
 - Base year, highest age group, and such
 - List of diseases and risk factors and their characteristics
 - List of risk factor and disease relations
- Population tables
 - Population numbers in base year
 - Total mortality
 - Population projections

Inputs (2) Categorical risk factors List of categories Prevalence by category and year Relative risk by category Interventions Continuous risk factors Distribution type (choice of Normal, lognormal, Weibull) Parameters by year Parameters of the distribution with theoretical minimum risk Risk functions (choice of linear, two-piece-linear, per unit, loglinear, and logit) and parameters Interventions **Erasmus** MC SCHOOL OF POPULATION HEALTH Prevent Eurocadet THE UNIVERSITY OF QUEENSLAND Inputs (3) Disease inputs Incidence in the base year

 Disease trends and interventions, expressed as proportional changes by year

Prevent Eurocadet

Limitations (1)

- Prevent is about relations between risk factors and diseases
 - The valid domain is changes in risk factor exposure, that give rise to change in related disease incidence, but do not substantially change disease natural history
 - This generally excludes early detection, interventions that improve survival
 - Prevent uses an average population perspective
 - Despite the risk factors there is no heterogeneity
 - No selective mortality for exposed
 - No strongly competing risks (but there is substitution)
- Many of these limitations do not apply in the case of Eurocadet

Limitations (2) Prevent makes independence assumptions Risk factors are independently distributed Disease incidence rates are independent All diseases specific cause of death rates are independent Each disease incidence is independent of all disease specific causes of death except its own Note that the independence assumptions are not violated: When diseases have a risk factor in common When a disease is a risk factor for another disease Disease incidence independence assumption: $\Pr\left\{\bigcap_{i\in\mathcal{I}}\left\{A_{Ii}\leq a\right\}\right\}=\prod_{i\in\mathcal{I}}\Pr\left\{A_{Ii}\leq a\right\}$ **Erasmus MC** SCHOOL OF POPULATION HEALTH Prevent Eurocadet THE UNIVERSITY OF QUEENSLAND Limitations (3)

- Currently Prevent uses an age-perspective
 - Effects of interventions in a specific age-group are applied to that same age-group in the projection
 - For some interventions, however, effects are long-lasting and should be applied to older age-groups too as the population ages (cohort-perspective)
 - This is a problem only when
 - The intervention is applied to a specific age-group
 - The effect is long-lasting
 - Some childhood interventions may fit the bill
- This limitation is to be removed

Conclusions

- Prevent is (and probably always will be) a work in progress, and it shows
 - Things are planned, but not yet implemented, leading to unused fields in the database
 - Some times things could be more consistent
 - The output lags the implementation of new features
- It could be better, but it is usable
- Prevent clearly has methodological limitations
 - No heterogeneity
 - Independence assumptions
- But if these limitations are understood, it will do the job for Eurocadet

Prevent Eurocadet

SCHOOL OF POPULATION HEALTH THE UNIVERSITY OF QUEENSLAND

Relevant literature

- Gunning-Schepers L. The health benefits of prevention: a simulation approach. Health Policy 1989;12(1-2):1-255.
- Gunning-Schepers LJ, Barendregt JJ, Van Der Maas PJ. Population interventions reassessed. Lancet 1989;1(8636):479-81. 2
- Gunning-Schepers LJ, Barendregt JJ. Timeless epidemiology or history cannot be ignored. J Clin Epidemiol 1992;45(4):365-72. 3.
- Naidoo B, Thorogood M, McPherson K, Gunning-Schepers LJ. Modelling the effects of increased physical activity on coronary heart disease in England and Wales. J Epidemiol Community Health 1997;51(2):144-50. 4.
- Gunning-Schepers LJ. Models: instruments for evidence based policy. J Epidemiol Community Health 1999;53(5):263.
- Mooy JM, Gunning-Schepers LJ. Computer-assisted health impact assessment for intersectoral health policy. Health Policy 2001;57(3):169-77. Brønnum-Hansen H. How good is the Prevent model for estimating the health benefits of prevention? J Epidemiol Community Health 1999;53(5):300-5. 6.
- Brønnum-Hansen H, Juel K. Estimating mortality due to cigarette smoking: two methods, same result. Epidemiology 2000;11(4):422-6.
- Brønnum-Hansen H. Predicting the effect of prevention of ischaemic heart disease. Scand J Public Health 2002;30(1):5-11
- Barendregt JJ, Oortmarssen GJ, van, Hout BA, van, Bosch JM, van den, Bonneux L. Coping with multiple morbidity in a life table. Mathematical Population Studies 1998;7(1):29-49.
- Barendregt JJ, Bonneux L, van der Maas PJ. The health care costs of smoking. N Engl J Med 1997;337(15):1052-7.
- Barendregt JJ, Bonneux L, Maas PJ, van der. When does nonsmoking save health care money? The many answers to a simple question. In: Jeanrenaud C, Soguel S, editors. Valuing the cost of smoking. Assessment methods, risk perception and policy options. Boston, Dordrecht, London: Kluwer Academic Publishers; 1999. p. 75-91.
- Barendregt JJ, Oortmarssen GJ, van, Vos T, Murray CJL, A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Population Health Metrics 2003;1(1):4.
 Barendregt JJ, Ott A. Consistency of epidemiologic estimates. European Journal of Epidemiology 2005;20(10):827-832.

Prevent Eurocadet

DYNAMO-HIA Wilma Nusselder; Hendriek Boshuizen; Stefan Lhachimi

Outline of presentation

Part A:

- 1. Background of the model:
 - Persons and institutions involved; Associated projects; Date of completion; Availability
- 2. Objective:
 - Target audience; Application spectrum
- 3. Model structure and principles:
 - Intrinsic (default) data; Data input requirements; Model results; Model validation/evaluation; Model sensitivity
- 4. Demonstration

Part B:

1. Predefined case

FIRST: What is DYNAMO, what does it do, and how does it work

What is DYNAMO-HIA?

DYNAMO-HIA is a ready-to-use tool to project the effects of changes in risk factor exposure due to policy or intervention on disease-specific and summary measures of population health

- Is generic
- Is dynamic
- Simulates a real life population
- Provides different outcome measures
- Can be used for users without programming skills

Note: It does not calculate how a policy affect risk factor exposure

DYNAMO: how does it work?

DYNAMO-HIA projects how changes in risk factor distribution affect disease-specific and summary measures of population health

- Situation with current risk factor exposure
 = reference scenario
 - initial exposure + future transitions
- Situation with changed risk factor exposure
 - = intervention scenario
 - change in initial exposure and/or future transitions
- Comparison gives effect of policy action/intervention
 - Disease-specific measures
 - Summary measure of population health

For all age groups For both genders For future years!

Synthesizing according to causal pathway

Part A: Background of the model

- 1. Persons and institutions involved
- 2. Associated projects
- 3. Date of completion
- 4. Availabiltiy
1. Persons and institutions involved

1.	Coordinator: Erasmus MC Rotterdam, the Netherlands
2.	Coordinating Center: ErasmusMC, Rotterdam, The Netherlands J.P. Mackenbach, W.J. Nusselder, S. Lhachimi, M. Kulik National Institute of Public Health, Bilthoven (RIVM), The Netherlands H. Boshuizen, P. van Baal, H. Smit
3.	 Other Associate Partners: Catalan Institute of Oncology, Barcelona, Spain Esteve Fernandez International Obesity task force, London,UK T. Lobstein, R. Jackson Leach London School for Hygiene and Tropical Medicine, London, UK M. McKee, J. Pomerleau K. Charlesworth Haughton Institute, Ireland, Dublin K. Bennett Instituto Tumori, Italy, Milan. - P. Baili, A. Micheli

2-4: Associated projects, date of completion, availability

2.	Associated projects:
	- RIVM: Chronic Disease Model
	 EMC/RIVM: JA EHLEIS: Dynamo-HIA with HLY as outcome (proposal submitted)
3.	Date of completion:
	- November 30, 2010 (original April 28, 2010, amendment pending)
4.	Availabiltiy
	- Free available from internet (end 2010)
	- Launched: at final conference: EUPHA November 10-13, 2010,
	Amsterdam, The Netherlands

Model structure and principles

1.	Intrinsic ((default)) data

- 2. Data input requirements
- 3. Model results
- 4. Model validation/evaluation
- 5. Model sensitivity

1. Intrinsic data

For large number of EU countries:

- Population numbers (all MS)
- Projected Newborns (all MS)
- Incidence, prevalence and mortality for 5 cancers, IHD, stroke, COPD, diabetes (10 MS)
- All-cause mortality (all MS)
- All-cause disability (all MS) h
- Exposure distribution of smoking (3 categories + time since quitting), BMI (mean, 3 categories, alcohol (5 categories) (at least 18 MS)
- RRs linking exposure to health outcomes (one set)

2. Data input requirements

Type of data

- Population numbers
- Newborns (optional)
- Incidence, prevalence and mortality for relevant diseases
- All-cause mortality
- All-cause disability (optional)
- Exposure distribution of risk factors
- RRs linking exposure to health outcomes

General:

- All data by single-year of age (0-95 years) and sex
- Flexibility in choice risk factor exposure, disease type and transitions between risk factor states 14

Incidence of diabetes in 40 year old women with overweight

Often not available

But data need is:

Dynamic Model for Health Impact Assessme

- Incidence of diabetes in 40 year old women
- % overweight for 40 year old women
- RR association between overweight and diabetes

Available & Used in DYNAMO-HIA

	3. Model results
-	Future risk factor prevalenceBy age or calendar year
•	Future disease prevalenceBy age or calendar year
•	Future mortality/survival • By age or calendar year
	Summary measures of population health Life expectancy Life expectancy with(out) diseases Disability-adjusted Life expectancy
	Structure of population: • Age, sex, diseased vs. non-diseased

4. Model validation/evaluation

- Test plan for code verification
- Comparison with excel calculations
- No formal model evaluation conducted but:
 - model structure is well founded in epidemiological evidence and demographic modeling practice
 - Software and source code will be publicly available for cross validation

But first, let's see how it works

BoD in NRW Claudia Terschüren et al.: Burden of Disease in North Rhine-Westphalia (BoD in NRW), part 1

Fakultät für Gesundheitswissenschaften	Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen
Burden of Disease in North Rhine-W	/estphalia (BoD in NRW), part 1
Quantifying the health impacts of policies - Düsseldorf, March, 16 – 17, 2010	principles, methods, and models
<u>C. Terschüren</u> , O. Mekel, R. Fehr, part 1 NRW Institute of Health and Work (LIGA.NRW) WHO CC Regional Health Policy and Public Health	<u>C. Hornberg</u> , T. Claßen, R. Samson, part 2 Universität Bielefeld Fakultät für Gesundheitswissenschaften
	Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen
Key questions:	
Effects of demografic chan	ge in NRW
 which effect has the demograph Westphalia on the burden of dise 	ic change in North Rhine – ease?
 2025: which diseases are contributed of disease, resulting in no care? 	outing which proportion to eeds in terms of health

	200)4	202	25	2025 v	s 2004	
Age group	male	female	male	female	male	female	en
0	80952	76868	77110	73068	95%	95%	
1-4	343768	326502	314552	298985	92%	92%	
5-9	478086	454815	394200	375131	82%	82%	
10-14	523088	496979	388647	369965	74%	74%	
15-19	527095	503422	402602	385325	76%	77%	
20-24	516247	508415	461316	459973	89%	90%	
25-29	507824	505354	540502	541166	106%	107%	
30-34	582337	573735	584655	587843	100%	102%	
35-39	781410	752688	568939	580810	73%	77%	
40-44	782147	754707	527277	546083	67%	72%	
45-49	679704	667361	487080	512604	72%	77%	
50-54	587953	600430	545798	566557	93%	94%	
55-59	488125	496806	721319	726561	148%	146%	
60-64	534125		691495	707323	129%	127%	
65-69	536944		5 55	6026	167 22	102%	
70-74	368254	4 -2.5	43 7	5147	+07 33	116%	
75-79	272270	408309		391142	114%	96%	
80-84	18.07	5.352 6	264436	370468	188%	114%	
85+	71799	229780	17.60	8.020 2	365%	199%	
total	8 803 255	9 272 097	8 540 989	9 067 031	97%	98%	

Identifying relevant cancer sites:

- lung: 26% of the male cancer patients die of lung cancer, 12% of the female - colon/rectum: either in men and women, 12% of the cancer patients in total die of colon/rectum cancer men: 5.6%; women 5.1% - stomach: men: 5.5%; women 6.2% - pancreas: men: not ranked ; women 20.0% - breast: - prostate: men: 9.4% women. 6.3% - ovary:

Source: Krebsatlas, German Cancer Research Center (DKFZ). 2003

- Cancer registry NRW (tumour sites)
- German infarction registry within the KORA Study, Augsburg (MI)
- Meta-analysis (dementia)

population forecast

NRW statitistics bureau

calculation tools

- WHO Excel template
- DisMod function
- Ms Access based tool

Basisdaten Regionen Gesundheitsendpunkte Daten	nach DisModII übertragen Prognosen er	stellen/einsehen
Vorhandene Bevölkerungsdaten Stichtag Anzahl männlich Anzahl weiblich III.01.2002 8803255 9272097 2 01.01.2025 8540988 9067023 2	Neuen Bevölkerungs- datensatz einlesen	
Todesursachenstatistik 2005 ist vorhan Sterbetafel 2004 ist vorhanden	den Todesursachenstatistik einlesen Sterbetafel bearbeiten	

🧱 Übersi	cht : Formular	
Basisda	ten Regionen Gesundheitsendpunkte Daten nach DisModII übertragen Prognosen erstellen/einsehen	
defin	ierte Regionen	
	internet in the internet of the Contract of th	
	Lugenonge kreise und kreisirele Staate	
-		
	Mönchengladbach	
	Mülheim a.d. Ruhr	
	Oberhausen	
	Remscheid	
	Solingen	
	Wuppertal	
	Kleve	
	Mettmann	
	Rhein-Kreis Neuss	
	Viersen	
	Wesel	
	Aachen	

	Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen
Basisdaten Regionen Gesundheitsendpunkte Daten nach Dist definierte Gesundheits- endpunkt Lungenkrebs ICD-Codes Disability Weights Morbiditätsparameter ICD-Codes Disability Weights M	
J	
	Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen
Basisdaten Regionen Gesundheitsendpunkte Daten nach Dist vorhandene ExcelMappe erstellen für Gesundheitsendpunkte Prognosejahr Umoenkrebs Imo Colonkrebs Imo Rektumkrebs Imo Bauchspeicheldrüsenkrebs (Par Imo Brustkrebs Imo Prostatakrebs Imo	VodII übertragen Prognosen erstellen/einsehen Gesundheitsendpunkt [demenzielle Erkrankungen ei Datum 07.10.2008 Mappe Bemerkung

		200)4	202	25	2025 vs	. 2004	
	Age group	male	female	male	female	male	female	talen
	0	22253	20991	19888	18887	89%	90%	
	1-4	93713	88636	81514	77416	87%	87%	
	5-9	131202	124253	103203	97969	79%	79%	
	10-14	147184	139589	102317	97188	70%	70%	Ruhr
	15-19	149553	143274	105720	101259	71%	71%	area
	20-24	148175	145519	121833	121596	82%	84%	
	25-29	146714	143808	144256	143701	98%	100%	
	30-34	167133	162550	157608	157249	94%	97%	
	35-39	220142	210552	152977	155446	69%	74%	
	40-44	222565	214464	142200	146317	64%	68%	
	45-49	202491	199865	132584	137690	65%	69%	
	50-54	180239	184621	150037	153947	83%	83%	
es	55-59	150877	152208	- 9.5%	0 196718	130%	129%	
Databa	60-64	160424	1	19045	195033	- 493	217	
NRW	65-69	160712	1870-0	160667	175023	100 /0	31 /0	
רםs ו	70-74	116007	142395	128540	53512	111%	108%	
sed or	75-79	5 2	302 170	9 1188	115508	103%	86%	
ce: ba	80-84			<u> </u>	808 96	52 ^{165%}	101%	
Sour	85+	20620	70386	7		349%	187%	
	total	2573085	2729094	2327638	2481324	90%	91%	

age groups

■ 2004 ■ 2025

■ 2004 ■ 2025

Claudia Hornberg et al.:

Burden of Disease in North Rhine-Westphalia (BoD in NRW), part 2: Environmental Tobacco Smoke (ETS)

Fakultät für Gesundheitswissenschaften	Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen								
Burden of Disease in North Rhine-Westphalia (BoD in NRW),									
part 2: Environmental Tobacco Smoke (ETS)									
before implementation of non-s m	oker-protection legislation								
Claudia Hornberg, School of Public Health,	University of Bielefeld								
Reinhard Samson, School of Public Health,	University of Bielefeld								
Thomas Claßen, School of Public Health, Ur	iversity of Bielefeld								
Odile C.L. Mekel, NRW Institute of Health ar	id Work (LIGA.NRW)								
Rainer Fehr , NRW Institute of Heal th and V	Nork (LIGA.NRW)								

Universität Dielefel

Fakultät für Gesundheitswissenschaften

Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen

Prevalence of smoking

	Current smokers (%) (%)		Never s (%	moked %)	Former smokers (%)			
Age	М	F	м	F	М	F	м	F
20-29	54	43	46	57	31	42	69	58
30-39	45	37	55	63	33	39	67	61
40-49	43	36	57	64	26	38	74	62
50-59	32	28	68	72	31	44	69	56
60-69	20	15	80	85	35	65	65	35
70-79	15	6	85	94	28	71	72	29
80+	8	4	92	96	28	71	72	29

Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen Fakultät für Gesundheitswissenschaften Universität Bielefeld ETS exposure of non-smoking men 100% 90% 80% 70% 60% Ratio in % no exposure other places 50% workplace home 40% 30% 20% 10% 0% 20–29 30–39 40–49 50–59 60–69 70–79 80+ Age groups

Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen

Health outcomes

	ICD-10	Age groups	Population of non- smokers
Lung cancer	C33, C34	>20 years	Never smoked
Coronary heart disease (CHD)	120-124	>20 years	Never smoked & former smokers
COPD	J41-J44	>20 years	Never smoked and former smokers
Stroke	160-169	>20 years	Never smoked
Low birth weight	P07.0, P07.1	0 years	
Sudden infant death (SIDS)	C33, C34	<1 year	

Fakultät fü	r Gesundhe	itswissensc	haften
-------------	------------	-------------	--------

ersität Dielefel

Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen

BoD attributable to ETS (cases in 2004)

	Premature deaths	Incidence	Premature deaths	Incidence	Premature deaths	Incidence	
		Adults					
	Males		Females		Total		
Lung cancer	31	34	42	45	74	79	
CHD	257	781	333	606	590	1387	
COPD	4	60	12	75	16	135	
Stroke	44	122	118	225	162	347	
		Children					
Low birth weight					3	822	
SIDS					24		
Sum	336	997	505	951	869	2770	
Total Burden	31828	55116	31000	51986	62828	107102	

	YLL	YLD	YLL	YLD	YLL	YLD	DALY	DALY/ Mio. inh.
	Adults							
	Males		Women		Total			
Lung cancer	266	5	356	45	623	50	673	37,23
CHD	2032	847	1322	395	3353	1242	4596	254,24
COPD	31	89	58	113	89	202	291	16,10
Stroke	251	208	454	366	705	574	1279	70,76
				Chil	dren			
Low birth weight SIDS					787 98		787 98	43,54 5,42
Sum	2580	949	2190	909	5655	2068	7724	378 33

Fakultät für Gesundheitswissenschaften	Landesinstitut für Gesundheit und Arbeit des Landes Nordrhein-Westfalen
Conclusions	
Legislation protecting non-smokers cannot dire ETS exposure at home.	ectly influence the
Further efforts are needed to reduce active sm amongst children and adolescents.	oking, especially
→ Examples would include smoke-free schools a facilities as well as other measures aimed at figure ubiquitousness of smoking.	and recreational ghting the

HEIMTSA / INTARESE toolbox Hilary Cowie et al., HEIMTSA and INTARESE

Volker Klotz et al.: INTARESE-based Guidebook and Resource Centre

Alberto Gotti: The HEIMTSA computational toolbox

The HEIMTSA centralized DBMS stores: <u>Dynamic data</u>

• Input/output files of each model execution

Supporting data

- Population data
- · Land use / land cover
- Time activity pattern
- · Background rate of diseases
- · Exposure-response function for the health end-points of interest
- · Monetary valuation functions for the health end-points of interest

•

HEIMTSA toolbox

The home page of the toolbox is composed of four main sections:

- Home
- Chains
- Models

HEIMTSA toolbox

- Your archive

Impact Calculation Tool Anne Knol et al.: Impact Calculation Tool

Background of the Impact Calculation Tool

 Modelling tool for quantification of health impacts from environmental exposures

Affiliated projects:

- International INTARESE project
- International EBoDE project (Environmental Burden of Disease in Europe)
- Finnish national projects Seturi and CLAIH
- Dutch national projects IQARUS, VAMPHIRE and KIP
- Developed by THL in collaboration with RIVM and PBL
- (Intended) date of completion: nov 2010
- Availability:
 - Part of INTARESE toolbox
 - downloadable freely from the internet (in the future)

EBoDE project

- · Environmental burden of disease in Europe
- Six countries: Belgium, Finland, France, Germany, Italy, and the Netherlands
- Nine environmental stressors:
 - Particulate matter air pollution
 - Environmental noise
 - Radon
 - Passive smoking
 - Lead
 - Dioxins
 - Ozone
 - Formaldehyde
 - Benzene

WHO environmental burden of disease methodology

river Pilot study finished – presented at Parma conference

<section-header><section-header><section-header><section-header><text><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Virpi Kollanus:

The Impact Calculation Tool (ICT) – Model specifics

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

The Impact Calculation Tool (ICT) – Model specifics

Virpi Kollanus National Institute for Health and Welfare (THL) Workshop: Quantifying the Health Impacts of Policies – Principles, methods, and models Düsseldorf 17.3.2010

Contents

- Model boundaries and outputs
- Quantification methods
- Input requirements
- Uncertainty and sensitivity analyses
- Demonstration 1 Health impacts of PM2.5 in Finland
- Demonstration 2 Predefined case study

Model boundaries

- One exposure / risk factor per assessment
- Time frame
 - 1...100 years
 - Exposure / risk level can be varied through follow-up
- Target population
 - Sex specified?
 - Current population or everyone alive during followup?
- Health endpoints of interest
 Free selection of mortality and morbidity endpoints
- All input data provided by the end user

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Model outputs

- Loss of disability-adjusted life years (DALY)
 - Years lost due to mortality
 - Years lost due to morbidity
 - \rightarrow annually
- Loss of life-expectancy
 - Age-specific for target population
 - Birth cohort
- No. of attributable deaths and morbidity cases
 - \rightarrow Age-specific
 - \rightarrow Annually

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Quantification of health impacts in ICT (1)

- Health impacts can be quantified using different approaches
 - \rightarrow Depending on the type of exposure and input data available
- 1) Exposure or health outcome scenarios
 - \rightarrow Change in mortality / morbidity risk
 - \rightarrow Population projections with dynamic lifetables
 - \rightarrow Years of life lost due to mortality / morbidity
- 2) Calculation of attributable BoD from total BoD \rightarrow Fraction caused by the risk factor of interest

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Input data: Exposure / health outcome scenarios

- Exposure scenarios
 - Exposure level (reference, BAU, alternative)
 - Exposure-response functions for health endpoints of interest (RRs, ARs)
- Health outcome scenarios
 - Change in health outcome (% or no. of cases)
 - \rightarrow Exposure / risk can vary through time
- Population data (age-specific)
- Birth rate
- Baseline mortality / morbidity (age-specific)
- Severity weight and duration for morbidity endpoints
- Optional: time discount factor

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Model validation /evaluation

Comparison to other models, e.g. IOMLIFET

Uncertainty and sensitivity

- ICT enables probabilistic assessment with Monte Carlo simulation
 - Probability distributions defined for key inputs
- Provides uncertainty views for outputs
 - Basic statistics
 - Probability bands
 - Probability density function
 - Cumulative probability density function
- Analytica has several built-in functions for sensitivity analyses
 - For both deterministic and probabilistic analyses
- Not yet incorporated into the user interface

- Exposure level
 - BAU: 9 µg/m3
 - Alternative: 7 µg/m3
 - Reference: 0 µg/m3
- Time frame:
 - Start year 2007
 - Follow-up 20 years
- Target population
 - Everyone alive during follow-up
- Mortality endpoint
 - Total mortality (non-accidental)
- Morbidity endpoints
 - New cases of chronic bronchitis
 - Restricted activity days (RAD)

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

DALY due to PM2.5 exposure of BALY (Years) Male female 5 업 Per total population ាភព -83 Study period V Key: Exposure V 38 36K 34 DALY (Years) 32K 30K 28 26 Cumulative Probability of DALY (Years) III Sex ♥ Male/female 🛱 1 Lat Unit ♥ Per total population 🛱 24 XY 228 ្រខ 2018 2020 2022 2024 2012 2016 Key: Expo Study period Exposure Alternative scenario 🛛 🗕 Referenc 0.9 0.8 Cumulative Probability 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 **+** 300 400K 700K 750K 800K 850 4501 6001 650K 350k 5001 5501 DALY (Years) NATIONAL INSTITUTE FOR HEALTH AND WELFARE Exposure BAU - Alternative scenario - Reference

Predefined HIA case study: input data

- Health outcome scenarios
 - BAU: fraction of outcomes caused by housing with barriers currently
 - Alternative: change in the risk due to increase in barrier free residences
- Population data (Age classification: 1 year intervals)
- (birth rate)
- Baseline data mortality (Age classification: 5 year intervals)
 - Total mortality
 - Accidental deaths
- Baseline morbidity data (Age classification: 5 year intervals)
 Femoral fractures
- Severity weight and duration for a femoral fracture NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Jeroen van Meijgaard - UCLA School of Public Health

March 17, 2010

HEALTH FORECASTING AT UCLA

Health Forecasting is

- a sister project of Health Impact Assessment, both based at the UCLA School of Public Health
- a collaborative effort between UCLA, Los Angeles County Department of Public Health,
- California Department of Public Health
- conceived and principally led by Dr Fielding
- fully supported by foundation grants, supporting a small staff of 1-3 researchers

Funding from

- The California Endowment
- The Robert Johnson Foundation
- UniHealth Foundation (local Los Angeles foundation supporting hospitals)
- Placer County (small county in California)

Target audience

- Local Health Departments
- Foundations
- Legislators and legislative analysts
- Advocacy groups

DEVELOPING A CALIFORNIA HEALTH FORECAST

Need for health forecasting...

- Policy makers want to know the likely effects of possible laws, regulations, programs and other actions on health of the population over time
- Large disparities in health outcomes—limited knowledge on how policy decisions affect these
- Health providers and health agencies need info on health trends and changes in disease burdens
- No other authoritative source of information on key health trends
- California rapidly changing unique sociodemographic population mix

...and improved modeling capability...

- Advances in data collection, such as the California Health Interview Survey and Los Angeles County Health Survey
- Increased computing capability --allows for cost effective micro-simulation models
- More epidemiological studies to support modeling
- Future population health is more easily predicted than outcomes in many other sectors (economics, agriculture, weather etc.)

...provide the right environment for a California Health Forecast

A framework that helps users to anticipate the future impact of current decisions and actions on health outcomes

THE RELATION BETWEEN HEALTH IMPACT ASSESSMENT AND HEALTH FORECASTING AT UCLA

HIA

Examine impact of a particular policy or program on exposures and subsequent health outcomes in static population

ORECASTING

INTUITIVE INTERFACE – ENABLING STAKEHOLDERS TO USE MODEL RESULTS FOR LOCAL POPULATIONS

The full model will be maintained at UCLA by project team – users can request scenarios to be simulated.

A **user friendly interface** that uses static model output to enable users to perform analysis on a local communities or counties. Users may input **community specific demographic information**, and the interface provides tables and graphics based on modeling results.

The **website** is a primary means of wide distribution of tools, results, and analyses

- · Baseline forecasts
- Technical documentation
- Simplified version of the model that can be used by local health officers, their staffs and other stakeholders.

APPLICATIONS OF THE FORECASTING MODEL Evaluate research questions about the association between sets • of variables that can not be observed directly through surveys, e.g. estimates of life time expenditures associated with levels of physical activity and weight, Inform debate on important policy issues in public health • through issue briefs, Support community advocacy to strengthen local communities ٠ and efforts to improve population health - intuitive access via web-based interface (www.health-forecasting.org), and Provide analysis on the long term impact of proposed policies and programs. UCLA ORECASTING **BUILDING THE PROTOTYPE MODEL Descriptive Population Risk Factor/Disease** Forecasting Framework

Population model including socio-economic and demographic information of the population of interest includes variables such as gender, age, race/ethnicity, education, income. etc

Modules

Smaller models that describe linkages between individual risk factors, environment effect, socio-economic and demographic characteristics and health outcomes

Module

Future trends of assumptions and underlying data of risk factor/disease modules and the population framework

The model is built around a continuous time microsimulation setting, allowing for inclusion of joint distributions as well as analysis of complex interactions, and distributional information on outcomes

The model focuses on the relation between exposures/risk factors and outcomes; no summary statistics. Outcome are disease incidence, prevalence, mortality, etc.

PROTOTYPE MODEL: INITIAL COMPONENTS

The Descriptive Population Framework

What will happen to patterns of mortality (and likely disease burden) over time based on substantial changes in demography due to:

- Changes in age distribution of different ethnic/racial groups based on current populations
- Immigration
- Marriage rates
- Birth rates

Risk Factor – Physical Activity and Obesity

Physical Activity and Obesity are risk factors for many chronic diseases. They are associated with each other and each impact morbidity, mortality and related medical outcomes in different ways

Ameliorable through:

- Individual interventions (medical care system, spas, gyms, home)
- Environmental interventions (worksite, school, community)
- Nutrition interventions

Health Outcomes – Coronary Heart Disease

What is the disease burden of a specific disease on different population groups, and how does this develop over time.

Coronary Heart Disease is the leading cause of death in the United States, while mortality has been reduced significantly during the last 30 years. Still both incidence and mortality can be reduced further through changing people's behavior.

APPLICATIONS OF MODEL

Primary prevention versus treatment – Physical activity and CHD

- Use the model to simulate the impact of different physical activity patterns and levels in the population and compare those to alternative scenarios that target a reduction in case fatality
- Objective is to show the impact of different approaches on CHD incidence, prevalence and case mortality as well as mortality from other causes
- Using the model show that small improvements in physical activity improves mortality (life expectancy), reduces disease (CHD), and increases years lived without CHD; reduction in case fatality rates improves mortality, but increases prevalence, and does no change years lived without CHD

Address impact of Ozone and PM2.5 on local population health

- Placer County DHS(~300,000 people, east of Sacramento, CA) requested the assessment of the impact of changes in Ozone and PM2.5 on population health to support advocacy
- Simulated air quality data and changes in O3 and PM2.5 under different scenario, and impact on asthma, other health outcomes, but also missed days of school and missed days of work

VALIDATION AND SENSITIVITY

Validation

- Limited experience validating the forecasting component of the model, however model can be updated as new data becomes available. E.g. estimates for CHD incidence and prevalence were based on data through 2001, and incorporated into model in 2003/2004; however new data released in 2005 showed a marked reduction in CHD incidence as well as CHD case fatality requiring revision to underlying to rates
- The risk factor component of the model have been cross validate with other models where relevant

Sensitivity

- Users of the model have rarely requested sensitivity analyses of the results; generally this is done in the form of simulating different what-if scenarios
- Uncertainty on the parameters can be incorporated by multivariate sampling on the parameters domain

UCLA

BARRIER FREE HOMES

Case analysis of increase of number of people living in a barrier free home

For simple case would need:

- 'Exposure' -> probability of living in a barrier free home, versus a regular home
- Risk of a fall conditional on type of home (or total falls and relative risk)
- Scenario -> probability of living a barrier free home in the case scenario
- Mortality conditional on fall (optional)

Simulation would generate

- Number of falls in each year for reference as well as the scenario
- Number of deaths for reference as well as the scenario
- Related outcomes

EXAMPLE – MODELLING THE IMPACT OF OBESITY ON MEDICAL EXPENDITURES

Overweight and Obesity in California

Observations

- BMI levels have increased steadily since the early 1980s
- Increases are seen among all groups but are most pronounced among younger people and Latinos
- Individual BMI levels are highly correlated over time
- BMI and Physical Activity are negatively correlated

Model Implementation

- Individual BMI levels are determined by gender, ethnicity, age, previous BMI and Physical Activity
- BMI impacts mortality though a relative risk function derived from the literature. RR of BMI on mortality decreases as age increases and are gender specific
- · BMI trends in the model with three scenarios
 - 1. Decline to 1984 levels by 2025
 - 2. Stable at 2005 levels
 - 3. Continued increase through 2025

UCLA

EXAMPLE – PHYSICAL ACTIVITY AND OBESITY ARE NOT INDEPENDENT

Any intervention targeting physical activity or obesity should take into account the association between these two behaviors. The population health forecasting model explicitly enables users to explore the joint distribution and the joint impact on health outcomes

EXAMPLE – FURTHER INCREASES IN BMI COULD COST CALIFORNIANS AN ADDITIONAL \$12 BILLION IN DIRECT PERSONAL MEDICAL EXPENDITURES ANNUALLY BY 2025

Total direct personal medical expenditures*, age 18+ (2003 \$000,000)

Direct personal medical expenditures for the non-institutionalized population make up about 50-55% of total medical expenditures as defined by the National Health Accounts

ORECASTING

USER FRIENDLY INTERFACE – COMPARE OUTCOMES ACROSS DIMENSIONS

NRW Institute of Health and Work

Ulenbergstraße 127-131, 40225 Düsseldorf, Germany Telefax +49 211 3101-1189 poststelle@liga.nrw.de

www.liga.nrw.de