Landeszentrum Gesundheit Nordrhein-Westfalen

Modelling health outcomes of prevention measures for NRW: potential health gains due to reduced obesity and overweight

Odile Mekel | Jutta Grohmann | Claudia Terschüren

Internat. HIA Conference 2-4 Oct, Geneva

Background

DYNAMO-HIA identified as a potential tool for quantitive HIA

→ Feasibilty testing and adaption to NRW situation

DYNAMO-HIA

- Free available software
- Developed by EU consortium coordinated by Erasmus MC und RIVM (NL)
- download incl. extensive documentation www.dynamo-hia.eu

Basics DYNAMO-HIA tool

- Projects the effects of changes in risk factor exposure due to policy measure or intervention on disease-specific and summary measures of population health
- Organizes and stores necessary input data
- Syntheses according to standard causal epidemiological pathway (Nusselder / Boshuizen, 2011)

'Full chain' of quantifying health impacts

DYNAMO-HIA – 2

- simulates a real life population through time
- is based on epidemiological evidence + available data
- provides large set of outcome measures
- is publicly available + no programming skills needed
- data are included for large set of EU countries

Nusselder, 2010

DYNAMO-HIA – 3

Type of data

- Population numbers
- Newborns (optional)
- Incidence, prevalence and mortality for relevant diseases
- All-cause mortality
- All-cause disability (optional)
- Exposure distribution of risk factors
- RRs linking exposure to health outcomes

General

- All data by single-year of age (0-95 years) and sex
- Flexibility in choice risk factor exposure, disease type and transitions between risk factor states

Nusselder, 2010

Basic input data

Population data

- Counts 0-95 yrs (2009)
- Newborns (2009)
- Overall daly weights, single year in % (optional)
- Overall mortality, single year in %

bold: NRW data

Risk factors: Alcohol, BMI, smoking

Prevalence

9 Diseases

- Prevalence
- Incidence
- DALY weights (optional)
- Excess mortality
- Relative Risk from risk factor
- Relative Risk from diseases

- Breast cancer
- Colorectal cancer
- Esophageal cancer
- Lung cancer
- Oral cancer
- COPD
- Diabetes
- IHD
- Stroke

BMI categorisation (WHO)

Normal weight	< 25	
Overweight	25 - < 30	kg / m²
Obese	≥ 30	

Body Mass Index (BMI) – data sources for NRW

age	source	methodology	region	year	sample size
0 - 3					
4	kindergarten examination	measured data	NRW	2010	11 765
5 - 6	school-entrance examination	measured data	NRW	2011	141 125
7 - 13					
				2010	E 477
14 - 15	school-leaving examination	measured data		2010	5177
16 - 17					
18 – 75	multiple	self-reported	NRW	2009	
and older					

by sex

Body Mass Index (BMI) – data sources Germany

age	source	methodology	level	year	sample size
3 months - < 17	KiGGS	measured data	Germany	2003 – 2006	17 158
14 - < 17	NVS II	measured data	Germany	2003 – 2010	11 765

by sex and age (per year)

Landeszentrum Gesundheit Nordrhein-Westfalen

Comparison BMI – boys

Comparison BMI – girls

Body Mass Index (BMI) – data sources NRW: adults

source	methodology	sample size
NRW Mikrozensus 2009	face-to-face interview; self-reported data	1% NRW Population n =179 622
NRW Survey 2009	telephone interview; self-reported data	n = 2 006
GEDA NRW / RKI 2009	telephone interview; self-reported data	n = 4 496

Germany (DYNAMO-HIA integrated data set)

NVS II	measured data	n = 13 207	

Comparison BMI – LIGA vs. GEDA (2009): male adults NRW

Comparison BMI – LIGA vs. GEDA (2009): female adults NRW

Selection BMI data for NRW

Criteria

- High quality
- NRW relevance
- Sample size
- All age groups, preferably by year
- Recent
- Corresponds to RR function

Selection

- Children: KiGGS data
- Adults: GEDA NRW sample

Scenarios

Reference scenario: BMI prevalence as in 2009; 5 diseases: IHD, stroke, diabetes, colorectal cancer, breast cancer

Alternative scenarios

Knowledge about the quantitative effectiveness of interventions regarding reduction of obesity/overweight is scarce

- Scenario 1: reduction of the prevalence rate of obesity with 20% over all age groups
- Scenario 2: reduction of the prevalence of obesity <u>and</u> overweight with 20% over all age groups

Results – prevalence

Discussion – 1

Strenghts of DYNAMO-HIA

- Free available
- Contains already a rich set of quality assured data (national level)
- Extensive documentation and training material
- Complex epidemiological model(s) implemented
- Life course approach incl. transitions between risk factor states
- Own risk factors and other diseases can be incuded
- Effects of interventions / policies can be modeled by comparing scenarios

Discussion – 2

Challenges

- Availability of high quality input data
- Assumptions are neccesary, also for overcoming missing data
- Construction of scenarios outside of DYNAMO HIA
- Data analysis and processing of input data outside of DYNAMO HIA

- Scenario modelling applied on meta level; more realistic scenarios will follow
- Comparability of prevalence estimates for NRW / Germany
- Sensibility analysis of input data
- Expansion of further risk factors (e.g., physical activity) and diseases

Conclusion

- DYNAMO-HIA can be adjusted to NRW situation
- Allows comparative analysis of different interventions / policies on population health by scenario analysis ("what-if") for estimating prevention potentials and health impacts
- Epidemiological knowledge is key
- Familiarisation takes time
- Expansion of further risk factors (e.g., physical activity) and diseases possible and planned

Landeszentrum Gesundheit Nordrhein-Westfalen

Contact

