Summary measures of population health (SMPH) in health-related impact assessments

Dr Annette Prüss-Ustün Public Health and Environment

From Wikipedia, the free encyclopedia

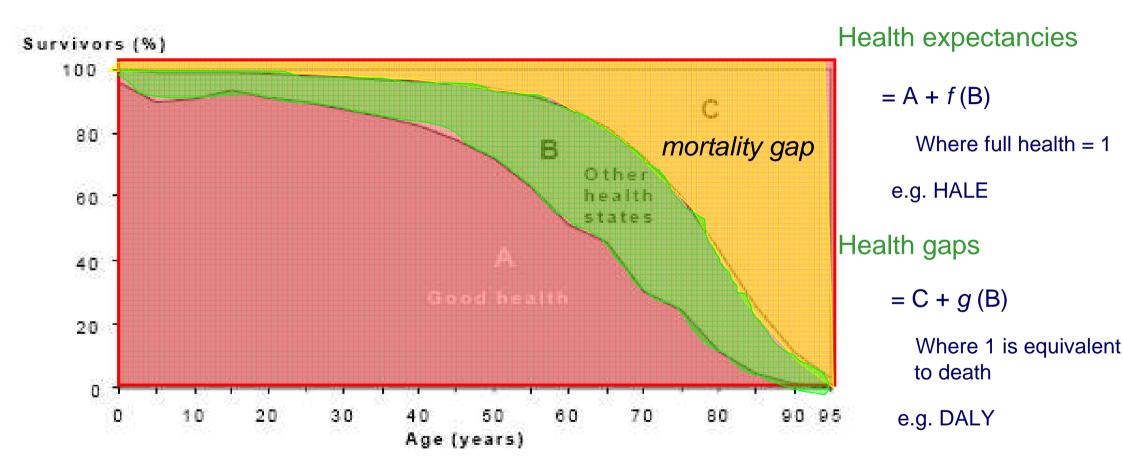
Disability-adjusted life year

The disability-adjusted life year (DALY) is a measure of overall disease burden. Originally developed by the World Health Organization, it is becoming increasingly common in the field of public health and health impact assessment (HIA).

Summary measures of population health

Health expectancies

- QALY Quality adjusted life years
- HEALY Healthy Life Years
- DFLE Disability-free life expectancy
- ALE Active Life Expectancy


Health gaps

- DALY Disability-adjusted Life Years
- etc.

Two families of SMPH

Burden of disease: how to measure?

Need of summary measure of population health that combines:

Mortality + Disability

And which allows to address the following questions:

- How does a death at age 20 compare with a death at age 70?
- How do 200 respiratory infections compare to 300 cases of infectious diarrhoea?

Summary measure of population health: DALY

```
Disability-Adjusted Life Years
```

DALY = YLL + YLD

years of life lost because of premature death (YLLs) years of life lived with disability (YLDs)

Burden = Mortality + Disability

one DALY = one lost year of healthy life

- Death at age 50 = 30 DALYs
- Mild mental retardation due to lead at birth = 30 DALYs

Years of Life with disability

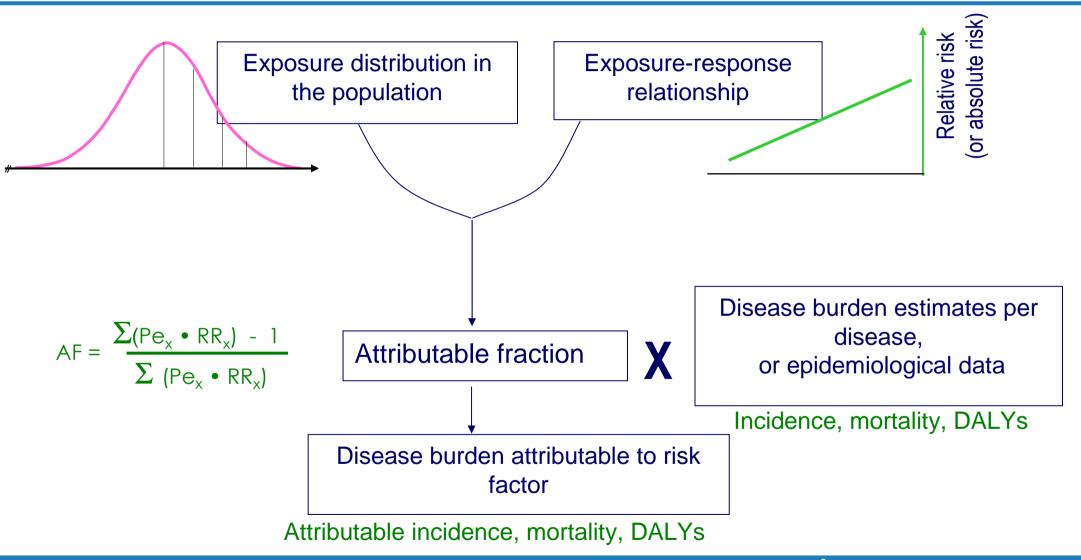
$YLD = I \times DW \times d$

YLD = Years of life lived with disability

- = Number of incident cases in the population
- DW = Disability weight
- d = Duration of disability [years]

3 cases of mild mental retardation due to lead at birth:

3 cases/year x 0.36 x 80 years = 84 YLD



How to make a quantified health-related impact assessment?

- Guides for EBD assessment at local level are available
- Comprehensive data needed:
 - Exposure data for selected risk factors in a selected setting (PM10, solid fuel use, % access to safe drinking water, etc)
 - Health data (deaths, incidence or DALYs) for given diseases in a selected _____ settings
- Calculations easy to perform

rganization

Assessments for estimating attributable disease

World Health

Organization

Why use SPMH for assessing health impacts?

Veerman JL et al (2005) Quantitative HIA: current practice and future directions

- Reviewed assessments included numerous indicators for health outcomes:
 - E.g.: Deaths; hospitalizations for asthma, accident injuries
- SMPH recommended in addition to conventional health outcome measures

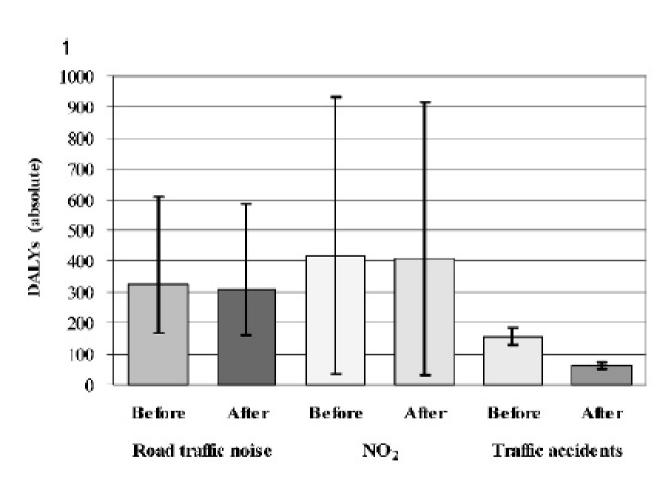
Kjellström et al (2003) Comparative assessment of transport risks—how it can contribute to health impact assessment of transport policies

- A common basis for comparison removes ambiguity when trying to make decisions on the basis of the health equivalent of apples and pears that can occur in HIA
- Problem: limited scientific research on changing health risks from transport policies.

rganization

Advantages of using SMPH in HIA

- Comparable across health outcomes
- Comparable across policy options
- Common language across health issues (risk factors, diseases)
- Standardized measure
- Coherent framework HIA, EBD, guidelines, status report can all be linked
- Additional decision-making support for selecting interventions/policies
- SMPH constitutes a basis of CEA

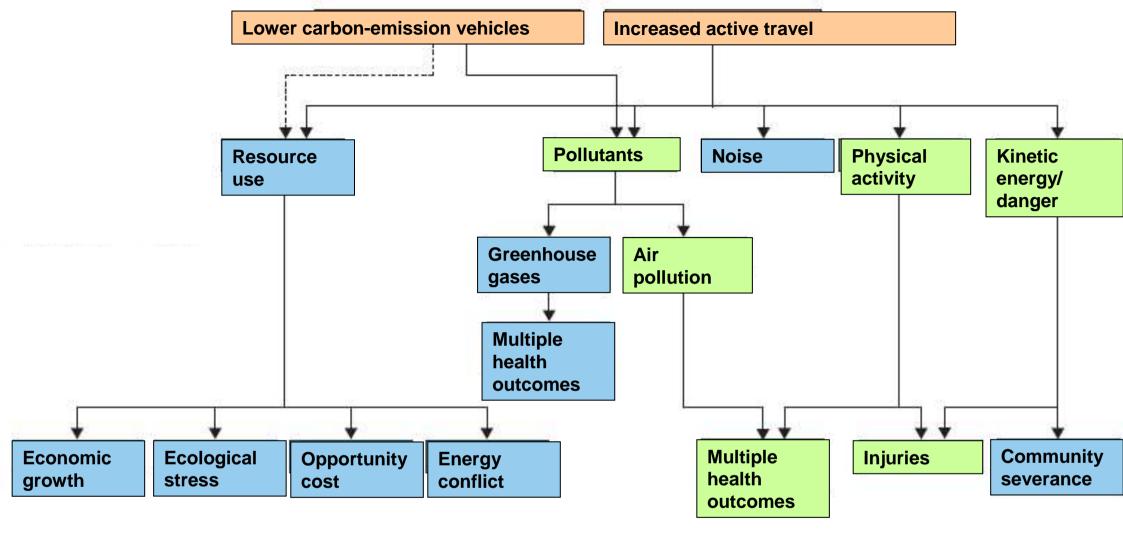

Works if...

- Burden of disease estimates are known for study population (including future burden?)
- Quantitative evidence for relevant exposure-risks is known
- In addition to conventional health measures, and as relative measure
- Supported by meaningful communication of results

Example of assessment using a comparative measure

Quantitative HIA of transport policies: two simulations related to speed limit reduction and traffic re-allocation in the Netherlands

D Schram-Bijkerk, E van Kempen, A B Knol, et al. (2009)


Example of assessment using a comparative measure

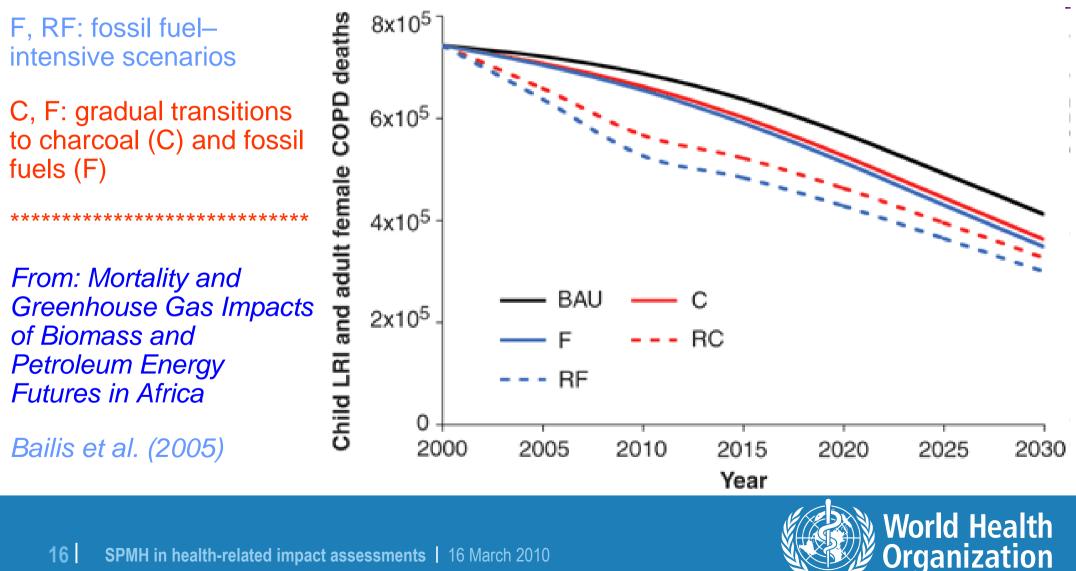
Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport

J Woodcock et al. Lancet, 2009

Measure: per million population

	Delhi	
	Lower-carbon- emission motor vehicles	active
Physical activity		
Premature deaths	0	-352
YLL	0	-6040
YLD	0	-816
DALYs	0	-6857
Air pollution		
Premature deaths	-74	-99
YLL	-1696	-2240
YLD	0	0
DALYs	-1696	-2240
Road traffic crashe	5*	
Premature deaths	0	<mark>-6</mark> 7
YLL	0	-2809
YLD	0	-730
DALYs	0	-3540
Total†		
Premature deaths	-74	-511
YLL	-1696	-10969
YLD	0	-1547
DALYs	-1696	-12 516

Health effects modelled


Health effects not modelled

Source: J Woodcock et al. Lancet, 2009

Larger scale assessments: **Energy policies in Africa**

BAU: Business as usual

Other studies/potential applications

- Replacement of 10% gasoline by biofuels in the USA: Life Cycle Impact Assessment. *McKone, Horvath and Lobscheid (2009)*
- Second-hand smoke policies
- Solid fuel use

17

Water, sanitation and hygiene

Tools for estimating impacts

- Spreadsheets to assist estimation of health impacts from change in:
 - Exposure to second-hand smoke
 - Exposure to outdoor air pollution ($PM_{10,2.5}$)
 - Solid fuel use for cooking
 - Blood lead levels
 - Mercury concentration in hair

Etc.

18

Series of guides on EBD for national or local assessment

- Lead
- Malnutrition
- Water, sanitation & hygiene
- Indoor air from solid fuels
- Ambient air
- Climate change
- UV radiation
- Community noise
- + calculation spreadsheets

- Occupation
 - carcinogens
 - dusts
 - back pain
 - needlestick injuries
- Poverty (only association)
- Housing
- Radon
- Mercury
- Second-hand smoke

Conclusions

- SMPH is one of the only comparable measures across multiple health impacts (compares HIA apples with oranges)
- Standardized measure, therefore transparent (under certain conditions)
- Increased application of SPMH for policies is relatively recent, as are calculation tools and common understanding
- SMPH can only translate impacts in areas with sufficient scientific knowledge
- Need to be communicated in a user-friendly way
- Can be a basis for costing health impacts
- Allows to speak in a common language

More information and references

- WHO's web sites on:
- **Global burden of disease**
- http://www.who.int/healthinfo/global_burden_disease/en/index.html
- Quantifying health impacts from environmental risks
- http://www.who.int/quantifying_ehimpacts/en/
- Health impact assessment
- http://www.who.int/hia/en/

